Intraduplex DNA-mediated electrochemistry of covalently tethered redox-active reporters.

نویسندگان

  • Catrina G Pheeney
  • Jacqueline K Barton
چکیده

Intraduplex DNA-mediated reduction is established as a general mechanism for the reduction of distally bound stacked redox-active species covalently tethered to DNA through flexible alkane linkages. Methylene Blue (MB), Nile Blue (NB), and Anthraquinone (AQ) were covalently tethered to DNA with three different covalent linkages. Using these reporters DNA electrochemistry was shown to be both DNA-mediated and intra-, rather than inter-, duplex. Significantly, the charge transport pathway occurring through the DNA π-stack is established by using an intervening AC mismatch to break this path. The fact that the DNA-mediated reduction of MB occurs primarily via intraduplex intercalation is established through varying the proximity and integrity of the neighboring duplex DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA electrochemistry with tethered methylene blue.

Methylene blue (MB'), covalently attached to DNA through a flexible C(12) alkyl linker, provides a sensitive redox reporter in DNA electrochemistry measurements. Tethered, intercalated MB' is reduced through DNA-mediated charge transport; the incorporation of a single base mismatch at position 3, 10, or 14 of a 17-mer causes an attenuation of the signal to 62 ± 3% of the well-matched DNA, irres...

متن کامل

Coupling into the base pair stack is necessary for DNA-mediated electrochemistry.

The electrochemistry of DNA films modified with different redox probes linked to DNA through saturated and conjugated tethers was investigated. Experiments feature two redox probes bound to DNA on two surfaces: anthraquinone (AQ)-modified uridines incorporated into thiolated DNA on gold (Au) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-modified uridines in pyrene-labeled DNA on highly orien...

متن کامل

DNA electrochemistry through the base pairs not the sugar-phosphate backbone.

Using intercalated, covalently bound daunomycin as a redox probe, ground state charge transport in DNA films with a perturbation in base pair stacking was examined in comparison with breaks in the sugar-phosphate backbone. While the introduction of one or even two nicks in the sugar-phosphate backbone yields no detectable effect on electron transfer, a CA mismatch significantly attenuates the e...

متن کامل

DNA binding shifts the redox potential of the transcription factor SoxR.

Electrochemistry measurements on DNA-modified electrodes are used to probe the effects of binding to DNA on the redox potential of SoxR, a transcription factor that contains a [2Fe-2S] cluster and is activated through oxidation. A DNA-bound potential of +200 mV versus NHE (normal hydrogen electrode) is found for SoxR isolated from Escherichia coli and Pseudomonas aeruginosa. This potential valu...

متن کامل

The Mesoscopic Electrochemistry of Molecular Junctions

Within the context of an electron dynamic (time-dependent) perspective and a voltage driving force acting to redistribute electrons between metallic and addressable molecular states, we define here the associated electron admittance and conductance. We specifically present a mesoscopic approach to resolving the electron transfer rate associated with the electrochemistry of a redox active film t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 135 40  شماره 

صفحات  -

تاریخ انتشار 2013